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Abstract

We extract values for the free symmetry energy as a function of the fragment size (the proton

number Z) from antisymmetrized molecular dynamics (AMD) calculations of calcium collisions.

Simple statistical physics describe well the distribution of hot nuclei at breakup, provided the

surface symmetry term in the free energy is much smaller at high excitation than in ground state

nuclei. This result may reflect the condition of low density and finite temperature when these

systems disassemble.
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Free energies play an important role in mixed phase environments. For nucleonic systems,

such environments may be found in subsaturation density systems formed in nucleus-nucleus

collisions, supernova collapses [1] and in the inner crusts of neutron stars [2, 3]. In these

scenarios, the free energy of fragments largely defines the balance between denser fragments

and the more dilute nucleonic gas. Key uncertainties to the prediction of free energies are

their dependencies on temperature, density and isospin asymmetry. The latter uncertainty

is particularly relevant to the inner crust of neutron stars, where the nuclear isospin asym-

metry term stabilizes nuclear droplets enveloped by a lower density neutron gas [2, 3]. The

development of experiment constraints on the asymmetry term constitutes an important

scientific objective.

Here we focus on multifragmentation in nucleus-nucleus collisions. Many aspects of such

data have been successfully described by equilibrium statistical models [4, 5, 6] that assume

fragments to be produced by a low density phase transition that occurs during the expansion

stage of a collision. The success of such descriptions suggests applications of statistical

theory to such collisions may provide constraints on the free energies and their asymmetry

dependence. Such comparisons provide an experimental test of the validity of equilibrium

descriptions. One can also test the assumption of local thermal equilibrium by comparing

the predictions of modern transport theories to equilibrium models. Calculations of isotopic

observables are particularly sensitive to the degree of chemical equilibrium achieved.

We investigate these issues with the antisymmetrized molecular dynamics (AMD) code

of Ref. [7]. In the present work, we analyse the yields of fragments produced in AMD

simulations for central collisions of nuclei with 40 ≤ A ≤ 60 at an incident energy E/A = 35

MeV. Even though AMD does not require the assumption of equilibrium, we have shown in

a previous paper [8] that some observables obtained from predicted isotope yields, such as

isoscaling, are consistent with the expectations from a statistical interpretation of fragment

formation.

If the yield of fragments, produced with N neutrons and Z protons in these collisions, is

governed by a statistical process at constant pressure, the fragment yield Y (N, Z) can be

related to the nuclear free energy Gnuc(N, Z) by the relation

Y (N, Z) ∝ exp

[

−
Gnuc(N, Z)

T
+

µn

T
N +

µp

T
Z

]

, (1)

where µn and µp are the neutron and proton chemical potentials. At temperatures relevant
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FIG. 1: Binding energies (not per nucleon) of nuclei calculated by AMD with the Gogny force.

The quantities −BE(N,Z) + 8(N + Z) MeV are shown by filled and open squares for even-Z and

odd-Z nuclei, respectively. Lines connect isotopes.

for multi-fragmentation, the temperature dependence of the asymmetry term in the free

energy for bulk nuclear matter is expected to be negligible. However, the temperature

dependence of the surface symmetry term of the free energy is not well known. The present

study suggests that the surface contribution to the symmetry free energy may be weakened

under the conditions associated with fragment formation.

Calculations within the AMD formalism have demonstrated its capability of reproducing

many quantal features of ground state nuclei [9]. The present AMD code was streamlined for

collisions; it nevetheless reproduces ground state binding energies of nuclei to within about

0.5 MeV/nucleon. Figure 1 shows the binding energies of nuclei BE(N, Z) with A . 40

which are obtained by minimizing the energy within AMD by adopting the Gogny force

[10]. In order to remove the strong A-dependence, we plot −BE(N, Z) + 8A MeV. We

note that the free energy equals the energy itself at zero temperature and pressure, i.e.

Gnuc(N, Z, T = 0, P = 0) = −BE(N, Z).

Much of our present knowledge of the symmetry energy has been extracted by fitting

the nuclear binding energies with the liquid-drop mass formula which contains a symmetry

energy term such as

Esym(N, Z) = c(A)
(N − Z)2

A
. (2)

In the simplest mass formula [11], the coefficient is independent of the nuclear size, c(A) =

csym, which assumes the volume nature of the symmetry energy. On the other hand, advanced

mass formulas [12, 13, 14] have introduced the A-dependence of c(A) as the surface effect.
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The extraction of c(A) from the nuclear binding energies is not quite straightforward even for

ground state nuclei. For example, if one extracts the symmetry energy by using the energy

difference of neighboring nuclei [15], the symmetry energy is largely a fluctuating function

in the nuclear chart due to shell and paring effects. Nevertheless, the global fitting with the

assumption of c(A) = cv + csA
−1/3, together with the standard volume, surface, Coulomb

and paring terms, usually results in a reasonable value of the coefficients. For example, we

obtain cv = 27.3 MeV and cs = −23.7 MeV by fitting all the available information of the

binding energies of nuclei [16], while we obtain cv = 30.1 MeV and cs = −35.1 MeV by

fitting the nuclei with 7 ≤ A ≤ 40.

If we fit the AMD binding energies in Fig. 1 for 7 ≤ A ≤ 40, we obtain cv = 30.9 MeV

and cs = −35.2 MeV. The extracted value of cv is comparable with the symmetry energy

in infinite nuclear matter at saturation density ρ0. To a good approximation, the nuclear

matter EOS at zero temperature can be written as

E(ρ, δ)/A = E(ρ, δ = 0)/A + Csym(ρ)δ2, (3)

where ρ = ρn + ρp and δ = (ρn − ρp)/ρ, and the symmetry energy coefficient has the value

Csym(ρ0) = 30.7 MeV for the Gogny force. The present study of heavy ion fragmentation

reactions will provide information about the symmetry free energy at subsaturation densities

and finite temperatures.

In order to extract the symmetry free energy from Eq. (1), it is necessary to obtain

the fragment yields Y (N, Z) for a wide range of isotopes. This is practically impossible if

we utilize the products produced in only one reaction system. However, we overcome this

limitation by combining the results from various reaction systems here labeled by an index

i. We calculate 40Ca+ 40Ca (i = 1), 48Ca+ 48Ca (i = 2), 60Ca+ 60Ca (i = 3) and 46Fe+ 46Fe

(i = 4) collisions at zero impact parameter and an incident energy E/A = 35 MeV. Previous

calculations with an equivalent version of AMD and the Gogny force [17, 18] reproduce

experimental data for various fragment observables in 40Ca + 40Ca collisions at E/A = 35

MeV.

AMD represents the wavefunction of the colliding system by fully antisymmetrized prod-

ucts of Gaussian nucleon wave packets and propogates these wave packets microscopically

during the collision [7, 17, 19]. The centroids of the nucleonic wave packets move determin-

istically through the mean field potential formed by the interactions with other nucleons. In
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addition, the followed state of the simulation branches stochastically and successively into

a huge number of reaction channels. The branching is caused by the two-nucleon collisions

and by the splittings of the wave packets. The interactions are parameterized in the AMD

model in terms of an effective force acting between nucleons and in terms of the two-nucleon

collision cross sections. We adopt the Gogny effective force [10] in this paper.

We simulate collisions by boosting two nuclei whose centers were separated by 9 fm and

calculating the dynamical evolution of each collision until t = 300 fm/c. The numbers of

simulated events are 1040, 949, 978 and 1400, respectively, for the four systems. In central

collisions, as shown in previous papers [17, 18], the projectile and target basically penetrate

each other and many fragments are formed not only from the projectilelike and targetlike

parts but also from a neck region between the two parts. The nuclear matter seems to be

strongly expanding one-dimensionally in the beam direction.

As we have shown in Ref. [8], the AMD results satisfy the isoscaling relation [20]

Yi(N, Z)/Yi′(N, Z) ∝ eαN+βZ (4)

with parameters α and β, for the fragment yields from two different reaction systems (i

and i′) with different neutron-to-protion ratios. When we have four reaction systems (i =

1, 2, 3, 4), the fragment yields Yi(N, Z) are related to the yields Y1(N, Z) of the reference

system by

Y1(N, Z) = Yi(N, Z)e−αiN−γi(Z). (5)

The yields Y1(N, Z) for one reaction system can have good statistics only in a narrow region

of (N, Z). The isoscaling relation is utilized with respect to N to extend the range of (N, Z).

We take the 40Ca + 40Ca system as the reference system and therefore α1 = γ1(Z) = 0. The

quantity − ln Y1(N, Z), i.e. the fragment yields for 40Ca + 40Ca, can be represented in four

different ways by using the scaled yields for different reaction systems which have good

statistics in different regions. They are combined by

K(N, Z) =
4

∑

i=1

wi(N, Z)[− ln Yi(N, Z) + αiN + γi(Z)] (6)

where the averaging weights wi(N, Z) are determined by minimizing the statistical errors

in K(N, Z) for individual (N, Z). The isoscaling parameters αi, which is common to all Z,

have been obtained by the isoscaling fit [8]. The parameters γi(Z) (i = 2, 3, 4) for each Z
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FIG. 2: The values of K(N,Z) for 3 ≤ Z ≤ 18 are shown by symbols for the abscissa of N + Z.

The values are obtained by combining the results of 40Ca + 40Ca, 48Ca + 48Ca, 60Ca + 60Ca and

46Fe + 46Fe simulations. The error bars show the statistical uncertainty due to the finite number

of events. The curve for each Z was obtained by fitting K(N,Z) using Eq. (7).

are determined by optimizing the agreement of the quantities [− ln Yi(N, Z) + αi + γi(Z)]

from different reactions i = 1, 2, 3 and 4.

The values of K(N, Z) obtained from the AMD simulations are shown by the open and

filled squares in Fig. 2 for odd- and even-Z nuclei, respectively. Even though the event

numbers are not very large, K(N, Z) has been obtained for a wide region of (N, Z). In most

cases K(N, Z) covers more than 10 isotopes with good statistical precisions for each Z.

So far, we have not assumed any specific form of K(N, Z). Nevertheless, the results show

a very smooth behavior of K(N, Z) as a function of N and Z. The shell and paring effects

are weak in K(N, Z) compared to the ground state binding energies shown in Fig. 1. Each

curve in Fig. 2 shows the fitting of K(N, Z) for each Z by a function

K(N, Z) = ξ(Z)N + η(Z) + ζ(Z)
(N − Z)2

N + Z
, (7)

where ξ(Z), η(Z) and ζ(Z) are the fitting parameters. The result of the simulations is fitted

well by this functional form. We choose the quadratic term similar to Eq. (2) for convenience,

so that the parameter ζ(Z) is directly related to the symmetry energy as shown below.

The obtained values of ζ(Z) are shown in Fig. 3 by solid points. Except for light fragments

(Z . 5), ζ(Z) is a smooth function of Z which depends on Z very weakly. Within the

uncertainty in the fitting procedure, the trend does not depend on the number of reaction

systems included in Fig. 2. As expected, the Z-dependence becomes more smooth and stable
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FIG. 3: The solid points are the extracted values of the coefficients ζ(Z) of Eq. (7) using the

combined fragment yields of four systems shown in Fig. 2. The thick solid curve, the thin sold

curve and the dashed line show functions ζ(Z) ∝ 1−k(2Z)−1/3 normalized at Z = 10 for k = 1.14,

0.5 and 0, respectively.
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FIG. 4: The solid points show ζ(Z)T when T = 3.4 MeV is assumed. The dot-dashed horizontal

line shows the volume symmetry energy cv = 30.9 MeV for the ground state nuclei calculated with

AMD. The solid line shows the symmetry energy c(A = 2Z) = cv +cs(2Z)−1/3 for the ground state

nuclei (cv = 30.9 MeV and cs = −35.2 MeV).
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by including more reaction systems (up to four in the present work) due to the extension of

the range of N .

Next we will show that the extracted value of ζ(Z) can be regarded as the ratio of the

symmetry energy to the temperature. Under the assumption of equilibrium, K(N, Z) is

identified with the exponent of Eq. (1) with inverted signs. If we approximate the nuclear

free energy Gnuc(N, Z) by a smooth function of (N, Z), K(N, Z) can be written as

K(N, Z) = f(A, Z) + g(A)
(N − Z)2

N + Z
+ aN + bZ, (8)

where f(A, Z) and g(A) have smooth A dependence. Specifically, we associate the symmetry

energy c(A) in Gnuc(N, Z) with g(A) by g(A) = c(A)/T . f(A, Z) and the linear terms in N

and Z can be associated with terms such as volume, surface and Coulomb terms in the free

energy and the chemical potential terms in Eq. (1). Because the range of important N for

each Z is limited, we can expand f(A, Z) and g(A) with respect to N for each Z. By denoting

the typical value of A for each Z by Ā(Z), f(A, Z) ≈ f(Ā(Z), Z)+f ′(Ā(Z), Z)(N+Z−Ā(Z))

and g(A) ≈ g(Ā(Z)). The higher order terms are negligible as can be checked directly by

assuming the nominal values of the liquid-drop coefficients.

Thus we have shown that Eq. (7) is a natural form and that the coefficient ζ(Z) is related

to the symmetry free energy c(A) by

ζ(Z) = c(Ā(Z))/T. (9)

In principle, ζ(Z) could depend on Z, reflecting the size-dependence of the symmetry energy

c(A). However, the extracted values of ζ(Z) in Fig. 3 are almost independent of Z for Z & 5.

This suggests a reduction of the surface contribution to the symmetry energy. The three

curves in Fig. 3 show functions ζ(Z) ∝ 1 − k(2Z)−1/3 for different surface-to-volume ratios

k = 1.14 (thick solid line), 0.5 (thin solid line) and 0 (horizontal dashed line), respectively.

The curves are normalized at Z = 10. The Z-dependence of ζ(Z) cannot be explained by

the surface-to-volume ratio k = −cs/cv = 1.14 for the symmetry energy of ground state

nuclei. The result shows that the surface effect in ζ(Z) is reduced to between k = 0 and 0.5.

There can be several possible explanations for the weakening of the surface symmetry

free energy. First of all, it is not very surprising that the coefficient in the free energy at

a finite temperature is different from that at the zero temperature. As is well known, the

surface tension reduces towards zero when the temperature is raised towards the critical
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temperature. A similar effect has been obtained for the symmetry free energy in Thomas-

Fermi surface calculations [21, 22]. If we adopt the formula in Ref. [21], the reduction factor

of the surface symmetry energy is approximately [1− (T/Tc)
2]2 = 0.91 for T = 3.4 MeV (see

below) and the critical temperature Tc = 16 MeV. This reduction is, however, not sufficient

to explain the weak Z-dependence of ζ(Z). Another explanation may be associated with the

fact that fragments are not isolated when they are formed. When the density fluctuation

is developing from a uniform low density matter, the fragments are still interacting with

attractive force through their surfaces. Therefore, surface free energies could be expected

to be smaller for these fragments than for totally isolated fragments. Independent of the

physical origin for the weakening of the surface symmetry free energy, it suggests that the

volume quantity, which is the same as that in the infinite nuclear matter, can be directly

obtained by the analysis of the fragmentation results even though the produced fragments

are not very large.

In the above analysis, only the ratio of the symmetry free energy to the temperature

is obtained. In the present theoretical approach, it is possible to get the density and the

temperature by studying the response of the results to a change of the symmetry term in the

effective force. In Ref. [8] we have derived the density ρ ∼ 0.08 fm−3 and the temperature

T ∼ 3.4 MeV for the same reaction systems studied in the present paper. This result is

consistent to the idea that the fragments are formed in a low density nuclear matter at a

finite temperature. The solid points in Fig. 4 show ζ(Z)T so that the extracted ζ(Z) can

be directly compared to the symmetry energy. The value of the symmetry energy extracted

from fragmentation is significantly lower than that of the bulk nuclear matter at normal

nuclear matter density, Csym(ρ0) ≈ cv = 30.9 MeV shown by the dot-dashed horizontal line

in Fig. 4, and this must be due to the reduced density, ρ ∼ 0.08 fm−3 < ρ0.

The solid line in Fig. 4 shows the symmetry energy [30.9 − 35.2(2Z)−1/3] MeV that

has been obtained by fitting the ground state binding energies calculated with AMD. The

extracted symmetry energy is smaller than the ground state symmetry energy probably

because of the greater reduction from the surface contribution when fragments are formed.

In conclusion, we have analysed AMD simulation results from nuclear collisions of vari-

ous nuclei with different neutron-to-proton ratios. Fragment yields from different reaction

systems are combined using the isoscaling relation. The availability of fragment yields over

a wide range of N and Z allows us to extract the symmetry energy at low density when

9



fragments are formed. The results are consistent to the idea that the fragments are formed

in nuclear matter at a low density and at a finite temperature. The extracted symmetry

energy shows almost no surface effect in it, which suggests that the property of infinite

nuclear matter can be directly obtained from the information of fragmentation.
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[10] J. Dechargé and D. Gogny, Phys. Rev. C21, 1568 (1980).

[11] C. F. V. Weizsacker, Z. Physik 96, 431 (1935).

10



[12] W. D. Myers and W. J. Swiatecki, Nucl. Phys. A81, 1 (1966).
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